2008 Joint Statistical Meetings August 3rd 2008, Denver, CO

Christian Schölzel¹ and Andreas Hense¹

¹⁾ Meteorological Institute at the University of Bonn Bonn, Germany

Outline

Ensembles of global and regional climate simulations

Focus

Climate change signals from ensembles of global and regional climate models

Regional climate model (CLM 4.2)

- Horizontal resolution: 7 km (Germany)
- Additional nesting: 50 km (Europe)

Global forcing ~> ensembles

General circulation models (IPCC AR4)

- ECHAM5-MPI/OM
- ECHO-G
- CCSM3.1

Outline Making sense of ensemble simulations Probabilistic assessment of regional climate change by ensemble dressing

Problem

Climate change signal with different sources of uncertainty

Question

How to translate ensembles into probabilistic information?

Outline

- 1 Ensemble post-processing in NWP and CC
- 2 Multivariate ensemble dressing
- 3 Application to ECHO-G simulations

Ensemble post-processing

Statistical post-processing of ensemble simulations

Probabilistic assessment of regional climate change by ensemble dressing

Notations Ensemble simulations $j = 1, ..., n_{ens}$

 $\vec{X} = (X_1, \dots, X_{n_{ens}})^T$

observations (y_i) / prediction (y)ensemble members (x_{ii}, \vec{x})

Ensemble prediction

... as conditional probability density $[Y|\vec{X}, \vec{\theta}]$ or $f_{ens}(y|\vec{x})$

Related approaches

Statistical post-processing of ensemble simulations

Regression methods

GDF: Gaussian DF interpretation **NGR:** Non-homogeneous Gaussian regression

Ensemble dressing methods

- SKD: Standard kernel dressing
- GED: Gaussian ensemble dressing
- AKD: Affine kernel dressing
- BMA: Bayesian model averaging

Bayesian approaches

Hierarchical Bayesian modeling, MCMC, ...

Ensemble dressing

...e.g. standard kernel ensemble dressing

Probabilistic assessment of regional climate change by ensemble dressing

Ensemble dressing

Define a probability density (kernel) around each ensemble member X_j and average the resulting distributions

Ensemble dressing methods

Kernel dressing and Bayesian model averaging

Standard kernel dressing (SKD)

$$f_{ens}^{(SKD)}(y|\vec{x}) = rac{1}{n_{ens}} \sum_{n_{ens}}^{j=1} f_K\left(rac{y - (a \cdot x_j + \omega)}{\sigma_D}
ight)$$

... with kernel $f_{\mathcal{K}}$, scaling *a*, offset ω , and dressing variance σ_D

Bayesian model averaging (BMA)

$$f_{ens}^{(BMA)}(y|\vec{x}) = \frac{1}{n_{ens}} \sum_{n_{ens}}^{j=1} w_j \cdot f_K\left(\frac{y - (a \cdot x_j + \omega)}{\sigma_D}\right)$$

... is similar to SKD, but introduces weights w_j , the probability that X_j the best member

Ensemble dressing methods

Kernel dressing and Bayesian model averaging

Bayesian model averaging (left) and Affine kernel dressing (right)

Ensemble dressing methods

Different application w.r.t. NWP or CC

Standard kernel dressing (SKD)

- Dressing variance typically given by average error the best member
- Assume indistinguishable simulations

Bayesian model averaging (BMA)

- Estimate weights via Bayes factors or EM-algorithm
- Follows the idea of supporting the best member

Bröcker *et al.*, (2008): "Ensembles are merely a source of information rather than a possible scenario of reality"

Multivariate extension

A multivariate extension to Gaussian ensemble dressing

Probabilistic assessment of regional climate change by ensemble dressing

Multivariate extension

Multi-dimensional random vectors \vec{Y} and \vec{X}_j (e.g. space-time) with dressing (co)variance Σ_D

$$f_{ens}^{(mvt)}(\vec{y}|\vec{x}_{1},...,\vec{x}_{n_{ens}}) = \frac{1}{n_{ens}} \sum_{n_{ens}}^{j=1} f_{K} \left((\vec{y} - \vec{x}_{j})^{T} \Sigma_{D}^{-1} (\vec{y} - \vec{x}_{j}) \right)$$

Note: $\vec{X}_j \sim \mathcal{N}(\ldots)$ but $\vec{Y} \nsim \mathcal{N}(\ldots)$

Practical application

... of multivariate Gaussian ensemble dressing

ECHO-G simulations

Ensemble members (T_{2m} , annual mean in 48°N–55°N and 5°E–15°E):

- 5 × 1860–2000 20C3M scenario
- 9 × 2000–2019 SRES A1B scenario

Trend estimation

... of multivariate Gaussian ensemble dressing

Trend estimation

- Estimate Σ_D from 20C3M-simulations
- Derive marginal distributions for mean and trend

Summary and Outlook

Future plans for application and development

Probabilistic assessment of regional climate change by ensemble dressing

Development

Conclusions

- Apply to CLM simulations
- Multivariate non-Gaussian kernel functions
- Bayesian framework

Multivariate extension

Acknowledgments. This work is part of the PArK project which is supported by the Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW). The authors would also like to credit the contributors of the R project.

Navigation

Probabilistic assessment of regional climate change

1 Introduction

- Outline
- 2 Background
 - Ensemble post-processing
 - Ensemble dressing
 - Multivariate extension
- 3 Applications
 - ECHO-G example
- 4 Summary
 - Outlook

►► Appendix

